Kerasとは?概要と導入方法をチェックして入門しよう!

侍エンジニアブログで、Deep Learningフレームワークについての記事を以前公開しました。

この記事では、その紹介記事でも触れた深層学習フレームワークの一つ、Kerasについて紹介します。Deep Learningの実務利用の場でも大活躍のフレームワークKeras、この記事から一緒に勉強を始めてみませんか?

目次

Kerasとは

Kerasの特徴

Kerasは、TensorflowやTheanoなどのテンソル計算を高速に行うライブラリをバックエンドに持つ、Deep Learning向けの上位ライブラリです。

このKerasで書いたコードをどのライブラリで実行するかを選ぶことができます。TheanoやTensorflowなどの、素のままだとDeep Learningを書くには粒度の小さすぎるライブラリをより手軽に使うことができます。

また、最近ではTensorflow自体にも組み込まれました。Tensorflowをimportするだけで、Kerasを使うことが可能です。Kerasのお作法に則ったコードを書くことで、再利用しやすく、他の開発者がコード見ても使いやすい美しいコーディングができます。

KerasはTensorflowに続いて2番めに注目されている

Githubに公開されている主要Deep Learningフレームワークを集めてStar数をグラフにしました。このグラフだと、KerasはTensorflowに続いて二番目にStarを獲得していて、非常に注目されていることがわかります。

Webとの親和性

KerasはJavaScriptでDeep Learningを動かすためのライブラリ「Keras.js」を公開しています。このライブラリを使うことで、なんとJavaScriptからKerasが利用可能です。

WebGLという、ブラウザからGPUを使う機能を使って、簡単にWeb上でDeep Learningを試すことができます。デモが公開されているので、チェックしてみてください!

https://transcranial.github.io/keras-js/

教材

Keras作者のDeep learning解説書

[ PythonとKerasによるディープラーニング 単行本 ]

Keras作者のショレ先生によって書かれた本が出版されています。少しむずかしい内容ですが、Kerasとニューラルネットワークの基本がわかったくらいの段階で購入すると新しい発見があると思います。

Kerasの導入

KerasはTensorflowに含まれているので、Tensorflowをインストールすることで使うことができます。

Kerasを別のライブラリとして使いたい場合は、まずは①「Tensorflowなどのバックエンドをインストール」してから、②「pipでkerasをインストール」しましょう。

pip install keras

Kerasのコード

実際にKerasを使った簡単なニューラルネットワークの実装を見てみましょう。

ニューラルネットワークの内部で使う関数をどんどんと追加していくだけで、直感的にニューラルネットワークモデルを実装できます。

もっと詳しくKerasとDeep Learningを勉強したいならば、侍エンジニアのマンツーマンレッスンを受講してみてください。Deep LearningとKerasに詳しいエンジニアがインストラクターとなって、あなたの勉強を完全サポートします!

まとめ

この記事ではDeep LearningフレームワークのKerasを紹介しました。Kerasは様々なDeep Learningフレームワークをバックエンドに選択できる、Deep Learning向けの上位ライブラリです。

より手軽で、よりわかりやすいDeep Learningの実装を行うときに最適のライブラリですし、実務でもよく使われるライブラリです。是非Kerasの勉強を始めてみてください!

この記事を書いた人

【プロフィール】
DX認定取得事業者に選定されている株式会社SAMURAIのマーケティング・コミュニケーション部が運営。「質の高いIT教育を、すべての人に」をミッションに、IT・プログラミングを学び始めた初学者の方に向け記事を執筆。
累計指導者数4万5,000名以上のプログラミングスクール「侍エンジニア」、累計登録者数1万8,000人以上のオンライン学習サービス「侍テラコヤ」で扱う教材開発のノウハウ、2013年の創業から運営で得た知見に基づき、記事の執筆だけでなく編集・監修も担当しています。
【専門分野】
IT/Web開発/AI・ロボット開発/インフラ開発/ゲーム開発/AI/Webデザイン

目次